Signatures of Oceanic Wind Events in Geostationary Cloud Top Temperature and Lightning Data

Author:

Thompson Kelsey B.1,Bateman Monte G.2,Mecikalski John R.1

Affiliation:

1. a Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

2. b Universities Space Research Association, Huntsville, Alabama

Abstract

AbstractA total of 13 ocean-based wind events from 2018, detected by buoys and Coastal-Marine Automated Network (C-MAN) stations, were analyzed using 1-min mesoscale sector Advanced Baseline Imager (ABI) cloud top brightness temperature (CTTB) data, as well as 1-min Geostationary Lightning Mapper (GLM) lightning data. The ABI and GLM instruments are located on the Geostationary Operational Environmental Satellite-16 (GOES-16) satellite. An oceanic wind event was defined as a buoy or C-MAN station-recorded peak wind gust of at least 14 m s−1, associated with a convective storm. The wind gust was required to exceed the wind speed by at least 4 m s−1 at the time of the event, but not exceed the corresponding wind speed by at least 4 m s−1 for more than 30 min. This study hypothesized that prior to a wind event, there should be unique signatures in ABI CTTB and GLM lightning datasets. The presumption was that the minimum CTTB and maximum flash rate should occur near the same time and prior to the event. The minimum CTTB occurred an average of 10.5 min and a median of 7 min prior to events, with a range from 29 min prior to 1 min after the event. Changes in CTTB were often subtle. A maximum flash rate occurred within 5 min of the minimum CTTB for 11 of the 12 events with lightning and did not exceed 11 flashes per minute for 9 of the 12 events with lightning. Operational weather forecasters might use CTTB and lightning trends to help identify storms capable of producing significant oceanic wind events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3