Impacts of Ice Particle Shape and Density Evolution on the Distribution of Orographic Precipitation

Author:

Jensen Anders A.1,Harrington Jerry Y.2,Morrison Hugh1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract An IMPROVE-2 orographic precipitation case is simulated using the Ice-Spheroids Habit Model with Aspect-Ratio Evolution (ISHMAEL) microphysics. In ISHMAEL, the evolution of ice particle properties such as mass, shape, size, density, and fall speed are predicted. These ice particle properties along with the ice size distributions from ISHMAEL and model-derived spatial distribution of accumulated precipitation are compared to observations. ISHMAEL predicts planar and columnar particles at spatial locations that agree with observations. Sensitivity simulations are used to explore the impact of predicting ice particle shape evolution on orographic cloud properties and precipitation compared to the traditional approach of representing snow and graupel using separate categories with conversion from snow to graupel during riming. High biases in both IWCs aloft and surface precipitation accumulation occur in the Umpqua River valley using separate snow and graupel categories because snow that does not convert to graupel is advected over the Coast Range and precipitates out in the valley. Improvements in IWCs aloft and surface precipitation using ISHMAEL occur from both predicting various vapor-grown habits and predicting the impact of partial riming on ice particle properties. Compared to traditional microphysics schemes, ISHMAEL also produces less spatial variability in accumulated precipitation.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3