A New Interpretation of Vortex-Split Sudden Stratospheric Warmings in Terms of Equilibrium Statistical Mechanics

Author:

Yasuda Yuki1,Bouchet Freddy2,Venaille Antoine2

Affiliation:

1. Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

2. Laboratoire de Physique, Université de Lyon, ENS de Lyon, Université de Claude Bernard, CNRS, Lyon, France

Abstract

Abstract Vortex-split sudden stratospheric warmings (S-SSWs) are investigated by using the Japanese 55-year Reanalysis, a spherical barotropic quasigeostrophic (QG) model, and equilibrium statistical mechanics. The statistical mechanics theory predicts a large-scale steady state as the most probable outcome of turbulent stirring, and such a state can be computed without describing all the details of the dynamics. The theory is applied to a disk domain that is modeled on the polar cap north of 45°N in the stratosphere. The equilibrium state is obtained by computing the maximum of an entropy functional. In the range of parameters relevant to the winter stratosphere, this state is anticyclonic. By contrast, cyclonic states are quasi-stationary states corresponding to saddle points of the entropy functional. These results indicate that the mean state of the stratosphere associated with the polar vortex is not close to an equilibrium state but to a quasi-stationary state. The theoretical calculations are compared with the results of a quasi-static experiment in which a wavenumber-2 topographic amplitude is increased linearly and slowly with time. The results suggest that the S-SSW can be qualitatively interpreted as the transition from the cyclonic quasi-stationary state toward the anticyclonic equilibrium state. The polar vortex splits during the transition toward the equilibrium state.

Funder

Japan Society for the Promotion of Science

FP7 Ideas: European Research Council

Leading Graduate School Program for Frontiers of Mathematical Sciences and Physics

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3