On Boussinesq Dynamics near the Tropopause

Author:

Asselin Olivier1,Bartello Peter1,Straub David N.1

Affiliation:

1. McGill University, Montreal, Quebec, Canada

Abstract

Abstract The near-tropopause energy spectrum closely follows a −5/3 power law at mesoscales. Most theories addressing the mesoscale spectrum assume unbalanced dynamics but ignore the tropopause (near which the bulk of the data were collected). Conversely, it has also been proposed that the mesoscale spectrum results from tropopause-induced alterations of geostrophic turbulence. This paper seeks to reconcile these a priori mutually exclusive theories by presenting simulations that permit both unbalanced motion and tropopause-induced effects. The model integrates the nonhydrostatic Boussinesq equations in the presence of a rapidly varying background stratification profile (an idealized tropopause). Decaying turbulence simulations were performed over a wide range of Rossby numbers. In the limit of weak flow (U ≲ 1 m s−1), the essential features of the Boussinesq simulations are well captured by a quasigeostrophic version of the model: secondary roll-ups of filaments and shallow spectral slopes are observed near the tropopause but not elsewhere. However, these tropopause-induced effects rapidly disappear with increasing flow strength. For flow strengths more typical of the tropopause (U ~ 10 m s−1), the spectrum develops a shallow, near −5/3 tail associated with fast-time-scale, unbalanced motion. In contrast to weak flows, this spectral shallowing is evident at any altitude and regardless of the presence of a tropopause. Diagnostics of the fast component of motion reveal significant inertia–gravity wave activity at large horizontal scales (where the balanced flow dominates). However, no evidence points to such activity in the shallow range. That is, the mesoscale of the model is dominated by unbalanced turbulence, not waves. Implications and limitations of these findings are discussed.

Funder

Natural Science and Engineering Research Council Discovery Grant

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3