Mechanisms Linking Global 5-Day Waves to Tropical Convection

Author:

King Malcolm J.1,Wheeler Matthew C.2,Lane Todd P.1

Affiliation:

1. School of Earth Sciences, and Australian Research Council Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, Victoria, Australia

2. Bureau of Meteorology, Melbourne, Victoria, Australia

Abstract

Abstract Reanalysis data and satellite-derived rainfall measurements are examined to determine possible mechanisms linking the “5 day” Rossby–Haurwitz wave to localized variations of tropical convection. The mechanisms in all regions rely on the modulation of zonal winds near the equator by the wave, but the nature of these mechanisms depends strongly on local topography and local climate. In the upper Amazon basin, the wave modulates the strength of prevailing easterlies and thus the upslope flow and associated convection on the eastern edge of the Andes. Similar modulation of upslope flow is involved off the Panamanian and Colombian Pacific coasts, but the deflection and confluence of low-level wind in the presence of the Andes and moisture transports across the Andes from the Amazon basin are also factors. Similar deflection and confluence of winds around and through the Maritime Continent lead to low-level divergence and convection anomalies over the eastern Indian Ocean. Anomalous moisture transports from the Congo basin to the eastern and northeastern Gulf of Guinea due to the wave affect atmospheric moisture over the Gulf of Guinea and thus convection in the region. Over oceanic convergence zones, modulations of the prevailing winds by the wave affect the overall wind magnitude, changing evaporation from the ocean surface and atmospheric moisture. Most of these mechanisms arise from the nonuniform nature of Earth’s surface and suggest that other external Rossby–Haurwitz waves may have similar interactions with convection.

Funder

Australian Research Council

Albert Shimmins Fund

Australian Postgraduate Award

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3