Affiliation:
1. Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan
Abstract
Diffusional growth of droplets by stochastic condensation and a resulting broadening of the size distribution has been considered as a mechanism for bridging the cloud droplet growth gap between condensation and collision–coalescence. Recent studies have shown that supersaturation fluctuations can lead to a broadening of the droplet size distribution at the condensational stage of droplet growth. However, most studies using stochastic models assume the phase relaxation time of a cloud parcel to be constant. In this paper, two questions are asked: how variability in droplet number concentration and radius influence the phase relaxation time and what effect it has on the droplet size distributions. To answer these questions, steady-state cloud conditions are created in the laboratory and digital inline holography is used to directly observe the variations in local number concentration and droplet size distribution and, thereby, the integral radius. Stochastic equations are also extended to account for fluctuations in integral radius and obtain new terms that are compared with the laboratory observations. It is found that the variability in integral radius is primarily driven by variations in the droplet number concentration and not the droplet radius. This variability does not contribute significantly to the mean droplet growth rate but does contribute significantly to the rate of increase of the size distribution width.
Funder
Division of Atmospheric and Geospace Sciences
Publisher
American Meteorological Society
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献