Affiliation:
1. McGill University, Montreal, Quebec, Canada
2. Environment and Climate Change Canada, Dorval, Quebec, Canada
Abstract
Idealized simulations are used to examine the sensitivity of moist baroclinic wave growth to environmental temperature and moisture content. With relative humidity held fixed, the surface temperature at 45°N, denoted T0, is varied from 275 to 290 K. As T0 increases, the atmospheric moisture content, moist instability, and moist available potential energy also increase. For the chosen initial configuration, moist waves develop larger eddy kinetic energy K e than corresponding dry waves, but enhanced diabatic heating at larger T0 does not further increase K e. This finding is linked to a warm-frontal cyclonic potential vorticity (PV) anomaly that strengthens and shifts downstream at larger T0 owing to increased diabatic heating along the frontal cloud band. This eastward shift feeds back negatively on the parent cyclone by increasing the downstream export of mechanical energy aloft and degrading the phasing between dry baroclinic vertical motion and buoyancy within the warm sector. The latter suppresses the conversion from eddy potential energy to K e [ C( P e, K e)], offsetting a direct enhancement of C( P e, K e) by diabatic heating. Compared to their dry counterparts, isolated moist waves (initiated by a single finite-amplitude PV anomaly) display a similar sensitivity to T0, while periodic wave trains (initiated by multiple such anomalies) exhibit a stronger negative relationship. The latter stems from anticyclonic diabatic PV anomalies aloft that originate along the warm front and recirculate through the system to interact with the upper-level trough. This interaction leads to a horizontal forward wave tilt that enhances the conversion of wave K e into zonal-mean kinetic energy.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
American Meteorological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献