Spontaneous Emission of Spiral Inertia–Gravity Waves and Formation of Elliptical Eyewalls in Tropical Cyclone–Like Vortices: Three-Dimensional Nonlinear Simulations

Author:

Menelaou Konstantinos1,Yau M. K.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

Abstract Although intense tropical cyclones (TCs) are considered to be axisymmetric vortices, observations reveal that they are often highly asymmetric. Better understanding of the underlying asymmetric dynamics is a critical step toward advancing TC intensity forecasting. In this paper, we revisit the mechanisms behind one of the most frequent asymmetric patterns: the deformation of the core into an elliptical shape. Previously, elliptical eyewalls were primarily thought to be an outcome of barotropic instability, a mechanism that involves the coupling and mutual growth of counterpropagating vortex Rossby (VR) waves. These results were largely based on simplified numerical models that filter out inertia–gravity (IG) waves. Consideration of IG waves introduces the possibility of an additional instability mechanism, one that involves a VR wave that spontaneously emits a spiral IG wave into the environment. We provide evidence that elliptical eyewalls, which may form within a three-dimensional primitive-equation nonlinear model that supports both instability types, can solely originate by the mechanism of spontaneous radiative imbalance. These evidences are supported by a number of nonlinear simulations, supplemental linear eigenmode analysis, and a linear simulation. The potential role of a multimechanistic instability is also briefly addressed.

Funder

McGill University

Natural Sciences and Engineering Research Council of Canada

Hydro-Québec

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3