Synoptic-Scale Zonal Available Potential Energy Increases in the Northern Hemisphere

Author:

Bowley Kevin A.1,Atallah Eyad H.1,Gyakum John R.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

Abstract Available potential energy (APE), a measure of the energy available for conversion to kinetic energy, has been previously applied to examine changes in baroclinic instability and seasonal changes in the general circulation. Here, pathways in which the troposphere can build the reservoir of zonal available potential energy AZ on synoptic (3–10 day) time scales are explored. A climatology of AZ and its generation GZ and conversion terms are calculated from the National Centers for Environmental Prediction–Department of Energy Reanalysis 2 dataset from 1979 to 2011 for 20°–85°N. A standardized anomaly-based identification technique identifies 183 AZ buildup events, which are grouped into two event types based upon their final AZ standardized anomaly (σ) value: 1) buildup anomalous (BA) events, which exceed 1.5σ, and 2) buildup neutral (BN) events, which do not exceed 1.5σ. Increases in GZ and reductions in baroclinic conversion CA, source and sink terms for AZ, are shown to equally contribute toward increasing AZ in most seasons. A synoptic analysis of composited mass fields for winter BA events (n = 18 events) and winter BN events (n = 28 events) is performed to identify contributions to anomalously low CA and high GZ. A process of high-latitude cooling near 160°E–120°W is found for both composite event types. The cooling processes are characterized by a period of poleward moisture flux and ascent followed by an isolation of the Arctic from the midlatitude flow, resulting in enhanced GZ. Negative anomalies in CA are also diagnosed, which generally occur in regions with northerly dynamic tropopause wind anomalies and neutral to positive thickness anomalies.

Funder

McGill University

Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3