A New Parsimonious Methodology of Mapping the Spatial Variability of Annual Maximum Rainfall in Mountainous Environments

Author:

Boni G.1,Parodi A.2,Siccardi F.1

Affiliation:

1. CIMA Research Foundation, Savona, and DIST, University of Genova, Genova, Italy

2. CIMA Research Foundation, Savona, Italy

Abstract

Abstract The estimation of rare frequency rainfall is an essential prerequisite for the design of engineering structures and to determine risk areas. Index-based methods are among the most applied for regional frequency analysis of hydrological variables such as discharge and rainfall and comprise two stages: the mapping of a scale or “index” factor and the derivation of rainfall growth curves. The underlying hypothesis of these methods is that cumulative distribution functions of a certain random variable can be assumed homogeneous on a given region, except for the index factor, which varies spatially in that region and is often represented by the expected value of the random variable itself at a given location. Methods either to single out homogeneous regions or to evaluate the index factor can be purely statistical and physically based. In this paper a robust and transferable physically based methodology is proposed to estimate the index factor for rainfall in mountainous regions referred to in the following text as “index rainfall.” Index rainfall is defined as the expected value of annual rainfall maxima recorded in a fixed time window: a time window of 1 h is used. Reliable estimates of the index rainfall are obtained at ungauged sites by applying a relationship, based on a multivariate linear regression obtained at gauged sites, of rainfall and selected synthetic descriptors for atmospheric climate and orography. An extended and general set of descriptors is chosen from parameters that are considered in the literature to affect rainfall intensity. The relevant relief descriptors, defining slope, elevation, orientation, etc., at a given location, are extracted from digital elevation models (DEMs). A 2D Fourier series analysis of the DEM is performed and a spectral analysis is carried out to single out the components with the highest morphological information content. The synthetic relief descriptors are evaluated along different cross sections of the 2D truncated Fourier series to single out the role of the prevailing convection direction of extreme rainfall-producing meteorological patterns. The optimal descriptor subset for the study area is then extracted to maximize transferability of the method. Application to the Italian and French Alps and the Apennines shows encouraging results. Descriptor subset extraction has been tested and validated on independent subsets of index rainfall estimates in the regions. Results demonstrate that the proposed method is robust, transferable, and reliable for the evaluation of the index rainfall in ungauged sites.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3