Field Observations of Surf Zone–Inner Shelf Exchange on a Rip-Channeled Beach

Author:

Brown Jenna A.1,MacMahan Jamie H.1,Reniers Ad J. H. M.2,Thornton Ed B.1

Affiliation:

1. Department of Oceanography, Naval Postgraduate School, Monterey, California

2. Department of Hydraulic Engineering, Delft University of Technology, Netherlands

Abstract

AbstractCross-shore exchange between the surf zone and the inner shelf is investigated using Lagrangian and Eulerian field measurements of rip current flows on a rip-channeled beach in Sand City, California. Surface drifters released on the inner shelf during weak wind conditions moved seaward due to rip current pulses and then returned shoreward in an arcing pattern, reentering the surf zone over shoals. The cross-shore velocities of the seaward- and shoreward-moving drifters were approximately equal in magnitude and decreased as a function of distance offshore. The drifters carried seaward by the rip current had maximum cross-shore velocities as they exited the surf zone and then decelerated as they moved offshore. The drifters moving shoreward accelerated as they approached the surfzone boundary with maximum cross-shore velocities as they reentered the surf zone over shoals. It was found that Stokes drift was not solely responsible for the onshore transport across the surfzone boundary. The cross-shore diffusivity on the inner shelf was greatest during observations of locally contained cross-shore exchange. These field observations provide evidence that the cross-shore exchange between the surf zone and inner shelf on a rip-channeled beach is due to wave-driven rip current circulations and results in surface material being contained within the nearshore region.

Publisher

American Meteorological Society

Subject

Oceanography

Reference48 articles.

1. Approaches to monitoring, control and management of harmful algae blooms (HABs);Anderson;Ocean Coastal Manage.,2009

2. Cross-shore transport at Huntington Beach. Implications for the fate of sewage discharged through an offshore ocean outfall;Boehm;Environ. Sci. Technol.,2002

3. Rip currents: 1. Theoretical investigations;Bowen;J. Geophys. Res.,1969

4. Flow kinematics of low-energy rip current systems;Brander;J. Coastal Res.,2001

5. Surfzone diffusivity on a rip-channeled beach;Brown;J. Geophys. Res.,2009

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3