Effect of Mesoscale Eddies on the Taiwan Strait Current

Author:

Chang Yu-Lin1,Miyazawa Yasumasa2,Guo Xinyu3

Affiliation:

1. National Taiwan Normal University, Taipei, Taiwan

2. Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan

3. Ehime University, Matsuyama, Ehime, Japan

Abstract

AbstractThis study shows that mesoscale eddies can alter the Taiwan Strait Current. The 20-yr data-assimilated Japan Coastal Ocean Predictability Experiment 2 (JCOPE2) reanalysis data are analyzed, and the results are confirmed with idealized experiments. The leading wind-forced seasonal cycle is excluded to focus on the effect of the eddy. The warm eddy southwest of Taiwan is shown to generate a northward flow, whereas the cold eddy produces a southward current. The effect of the eddy penetrates onto the shelf through the joint effect of baroclinicity and relief (JEBAR). The cross-isobath fluxes lead to shelfward convergence and divergence, setting up the modulation of the sea level slope. The resulting along-strait current anomaly eventually affects a wide area of the Taiwan Strait. The stronger eddy leads to larger modification of the cross-shelf flows and sea level slope, producing a greater transport anomaly. The composite Sea-Viewing Wide Field-of-View Sensor chlorophyll-a (Chl-a) serves as an indicator to show the change in Chl-a concentration in the strait in response to the eddy-induced current. During the warm eddy period, the current carries the southern water of lower concentration northward, reducing Chl-a concentration in the strait. In contrast, Chl-a is enhanced because the cold eddy–induced southward current carries the northern water of higher concentration southward into the strait.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3