The Modulation of Equatorial Turbulence by Tropical Instability Waves in a Regional Ocean Model

Author:

Holmes R. M.1,Thomas L. N.1

Affiliation:

1. Environmental Earth System Science, Stanford University, Stanford, California

Abstract

AbstractSmall-scale turbulent mixing in the upper Equatorial Undercurrent (EUC) of the eastern Pacific cold tongue is a critical component of the SST budget that drives variations in SST on a range of time scales. Recent observations have shown that turbulent mixing within the EUC is modulated by tropical instability waves (TIWs). A regional ocean model is used to investigate the mechanisms through which large-scale TIW circulation modulates the small-scale shear, stratification, and shear-driven turbulence in the EUC. Eulerian analyses of time series taken from both the model and the Tropical Atmosphere Ocean (TAO) array suggest that increases in the zonal shear of the EUC drive increased mixing on the leading edge of the TIW warm phase. A Lagrangian vorticity analysis attributes this increased zonal shear to horizontal vortex stretching driven by the strain in the TIW horizontal velocity field acting on the existing EUC shear. To investigate the impact of horizontal vortex stretching on the turbulent heat flux averaged over a TIW period the effects of periodic TIW strain are included as forcing in a simple 1D mixing model of the EUC. Model runs with TIW forcing show turbulent heat fluxes up to 30% larger than runs without TIW forcing, with the magnitude of the increase being sensitive to the vertical mixing scheme used in the model. These results emphasize the importance of coupling between the large-scale circulation and small-scale turbulence in the equatorial regions, with implications for the SST budget of the equatorial Pacific.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3