Affiliation:
1. Environmental Earth System Science, Stanford University, Stanford, California
Abstract
AbstractSmall-scale turbulent mixing in the upper Equatorial Undercurrent (EUC) of the eastern Pacific cold tongue is a critical component of the SST budget that drives variations in SST on a range of time scales. Recent observations have shown that turbulent mixing within the EUC is modulated by tropical instability waves (TIWs). A regional ocean model is used to investigate the mechanisms through which large-scale TIW circulation modulates the small-scale shear, stratification, and shear-driven turbulence in the EUC. Eulerian analyses of time series taken from both the model and the Tropical Atmosphere Ocean (TAO) array suggest that increases in the zonal shear of the EUC drive increased mixing on the leading edge of the TIW warm phase. A Lagrangian vorticity analysis attributes this increased zonal shear to horizontal vortex stretching driven by the strain in the TIW horizontal velocity field acting on the existing EUC shear. To investigate the impact of horizontal vortex stretching on the turbulent heat flux averaged over a TIW period the effects of periodic TIW strain are included as forcing in a simple 1D mixing model of the EUC. Model runs with TIW forcing show turbulent heat fluxes up to 30% larger than runs without TIW forcing, with the magnitude of the increase being sensitive to the vertical mixing scheme used in the model. These results emphasize the importance of coupling between the large-scale circulation and small-scale turbulence in the equatorial regions, with implications for the SST budget of the equatorial Pacific.
Publisher
American Meteorological Society
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献