Impacts of Large-Scale Soil Moisture Anomalies on the Hydroclimate of Southeastern South America

Author:

Bieri Carolina A.1,Dominguez Francina1,Lawrence David M.2

Affiliation:

1. a Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

2. b National Center for Atmospheric Research, Boulder, Colorado

Abstract

AbstractThe La Plata basin (LPB), located in southeastern South America (SESA), is a region of significant socioeconomic importance, particularly for agriculture. This area of South America exhibits strong land–atmosphere coupling in the warm season. In this work, we evaluate the impact of large-scale soil moisture (SM) anomalies on regional-scale atmospheric conditions. Multivariate empirical orthogonal function (EOF) analysis is used to extract the dominant modes of joint variability of monthly averaged root-zone SM and 1-month-lagged precipitation from atmospheric reanalyses. We find that the dominant EOF pattern is consistent with a positive correlation between antecedent SM and precipitation, while the second dominant EOF pattern is consistent with a negative correlation between these variables. To evaluate causality, the effects of large-scale SM anomalies on atmospheric variables are examined using the Community Earth System Model (CESM). CESM simulations suggest that anomalously dry SM is initially collocated with decreased precipitation. Subsequent changes in the atmospheric circulation associated with a thermal low draw moisture into the region, eventually promoting increased precipitation. This study investigates the pathways through which SM anomalies modulate precipitation in this region. For this reason, this study has potential atmospheric prediction applications that could benefit the population and the socioeconomic well-being of this important region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3