Evaluation of the subseasonal forecast skill of floods associated with atmospheric rivers in coastal Western U.S. watersheds

Author:

Cao Qian1,Shukla Shraddhanand2,DeFlorio Michael J.3,Ralph F. Martin3,Lettenmaier Dennis P.1

Affiliation:

1. 1 Department of Geography, University of California, Los Angeles, Los Angeles, CA

2. 2 University of California, Santa Barbara, Santa Barbara, CA

3. 3 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, CA

Abstract

AbstractAtmospheric rivers (ARs) are responsible for up to 90% of major flood events along the U.S. West Coast. The timescale of subseasonal forecasting (two weeks to one month) is a critical lead time for proactive mitigation of flood disasters. The NOAA/Climate Testbed Subseasonal Experiment (SubX) is a research-to-operations project with almost immediate availability of forecasts. It has produced a reforecast database that facilitates evaluation of flood forecasts at these subseasonal lead times. Here, we examine the SubX driven forecast skill of AR-related flooding out to 4-week lead using the Distributed Hydrology Soil Vegetation Model (DHSVM), with particular attention to the role of antecedent soil moisture (ASM), which modulates the relationship between meteorological and hydrological forecast skill. We study three watersheds along a transect of the U.S. West Coast: the Chehalis River basin in Washington, the Russian River basin in Northern California, and the Santa Margarita River basin in Southern California. We find that the SubX driven flood forecast skill drops quickly after week 1, during which there is relatively high deterministic forecast skill. We find some probabilistic forecast skill relative to climatology as well as ensemble streamflow prediction (ESP) in week 2, but minimal skill in weeks 3-4, especially for annual maximum floods, notwithstanding some probabilistic skill for smaller floods in week 3. Using ESP and reverse-ESP experiments to consider the relative influence of ASM and SubX reforecast skill, we find that ASM dominates probabilistic forecast skill only for small flood events at week 1, while SubX reforecast skill dominates for large flood events at all lead times.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3