Why Does the Deep Western Boundary Current “Leak” around Flemish Cap?

Author:

Solodoch Aviv1,McWilliams James C.1,Stewart Andrew L.1,Gula Jonathan2,Renault Lionel3

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

2. Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France

3. LEGOS, University of Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France

Abstract

AbstractThe southward-flowing deep limb of the Atlantic meridional overturning circulation is composed of both the deep western boundary current (DWBC) and interior pathways. The latter are fed by “leakiness” from the DWBC in the Newfoundland Basin. However, the cause of this leakiness has not yet been explored mechanistically. Here the statistics and dynamics of the DWBC leakiness in the Newfoundland Basin are explored using two float datasets and a high-resolution numerical model. The float leakiness around Flemish Cap is found to be concentrated in several areas (hot spots) that are collocated with bathymetric curvature and steepening. Numerical particle advection experiments reveal that the Lagrangian mean velocity is offshore at these hot spots, while Lagrangian variability is minimal locally. Furthermore, model Eulerian mean streamlines separate from the DWBC to the interior at the leakiness hot spots. This suggests that the leakiness of Lagrangian particles is primarily accomplished by an Eulerian mean flow across isobaths, though eddies serve to transfer around 50% of the Lagrangian particles to the leakiness hot spots via chaotic advection, and rectified eddy transport accounts for around 50% of the offshore flow along the southern face of Flemish Cap. Analysis of the model’s energy and potential vorticity budgets suggests that the flow is baroclinically unstable after separation, but that the resulting eddies induce modest modifications of the mean potential vorticity along streamlines. These results suggest that mean uncompensated leakiness occurs mostly through inertial separation, for which a scaling analysis is presented. Implications for leakiness of other major boundary current systems are discussed.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tagging of Atlantic bluefin tuna off Ireland reveals use of distinct oceanographic hotspots;Progress in Oceanography;2023-12

2. The interior spreading story of Labrador Sea Water;Frontiers in Marine Science;2023-10-31

3. Buoyancy forcing and the subpolar Atlantic meridional overturning circulation;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-10-23

4. Basin-Scale to Submesoscale Variability of the East Mediterranean Sea Upper Circulation;Journal of Physical Oceanography;2023-09

5. Large-scale control of the retroflection of the Labrador Current;Nature Communications;2023-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3