Mutual Interaction between Surface Waves and Langmuir Circulations Observed in Wave-Resolving Numerical Simulations

Author:

Fujiwara Yasushi1,Yoshikawa Yutaka2

Affiliation:

1. Graduate School of Science, Kyoto University, Kyoto, and Research Fellow of Japan Society for the Promotion of Science, University of Tokyo, Tokyo, Japan

2. Graduate School of Science, Kyoto University, Kyoto, Japan

Abstract

AbstractWave-resolving simulations of monochromatic surface waves and Langmuir circulations (LCs) under an idealized condition are performed to investigate the dynamics of wave–current mutual interaction. When the Froude number (the ratio of the friction velocity of wind stress imposed at the surface and wave phase speed) is large, waves become refracted by the downwind jet associated with LCs and become amplitude modulated in the crosswind direction. In such cases, the simulations using the Craik–Leibovich (CL) equation with a prescribed horizontally uniform Stokes drift profile are found to underestimate the intensity of LCs. Vorticity budget analysis reveals that horizontal shear of Stokes drift induced by the wave modulation tilts the wind-driven vorticity to the downwind direction, intensifying the LCs that caused the waves to be modulated. Such an effect is not reproduced in the CL equation unless the Stokes drift of the waves modulated by LCs is prescribed. This intensification mechanism is similar to the CL1 mechanism in that the horizontal shear of the Stokes drift plays a key role, but it is more likely to occur because the shear in this interaction is automatically generated by the LCs whereas the shear in the CL1 mechanism is retained only when a particular phase relation between two crossing waves is kept locked for many periods.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A numerical study on Langmuir circulations and coherent vortical structures beneath surface waves;Journal of Fluid Mechanics;2023-08-22

2. Introduction;Quasi-linear Theory for Surface Wave-Current Interactions;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3