On the Average Shape of the Largest Waves in Finite Water Depths

Author:

Karmpadakis Ioannis1,Swan Chris1

Affiliation:

1. Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom

Abstract

AbstractThis paper investigates the average shape of the largest waves arising in finite water depths. Specifically, the largest waves recorded in time histories of the water surface elevation at a single point have been examined. These are compared to commonly applied theories in engineering and oceanographic practice. To achieve this both field observations and a new set of laboratory measurements are considered. The latter concern long random simulations of directionally spread sea states generated using realistic Joint North Sea Wave Project (JONSWAP) frequency spectra. It is shown that approximations related to the linear theory of quasi-determinism (QD) cannot describe some key characteristics of the largest waves. While second-order corrections to the QD predictions provide an improvement, key effects arising in very steep or shallow water sea states are not captured. While studies involving idealized wave groups have demonstrated significant changes arising as a result of higher-order nonlinear wave–wave interactions, these have not been observed in random sea states. The present paper addresses this discrepancy by decomposing random wave measurements into separate populations of breaking and nonbreaking waves. The characteristics of average wave shapes in the two populations are examined and their key differences discussed. These explain the mismatch between findings in earlier random and deterministic wave studies.

Funder

LoWiSh Joint Industry Project

Publisher

American Meteorological Society

Subject

Oceanography

Reference73 articles.

1. Non-linear evolution of uni-directional focussed wave-groups on a deep water: A comparison of models;Adcock;Appl. Ocean Res.,2016

2. Nonlinear dynamics of wave-groups in random seas: Unexpected walls of water in the open ocean;Adcock;Proc. Roy. Soc.,2015

3. On non-linear very large sea wave groups;Arena;Ocean Eng.,2005

4. Breaking and Dissipation of Ocean Surface Waves

5. Extreme waves in shallow and intermediate water depths;Baldock;Coastal Eng.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3