Statistical Prediction of Waterspout Probability for the Florida Keys

Author:

Devanas Andrew1,Stefanova Lydia2

Affiliation:

1. NOAA/National Weather Service, Key West, Florida

2. Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida

Abstract

Abstract A statistical model of waterspout probability was developed for wet-season (June–September) days over the Florida Keys. An analysis was performed on over 200 separate variables derived from Key West 1200 UTC daily wet-season soundings during the period 2006–14. These variables were separated into two subsets: days on which a waterspout was reported anywhere in the Florida Keys coastal waters and days on which no waterspouts were reported. Days on which waterspouts were reported were determined from the National Weather Service (NWS) Key West local storm reports. The sounding at Key West was used for this analysis since it was assumed to be representative of the atmospheric environment over the area evaluated in this study. The probability of a waterspout report day was modeled using multiple logistic regression with selected predictors obtained from the sounding variables. The final model containing eight separate variables was validated using repeated fivefold cross validation, and its performance was compared to that of an existing waterspout index used as a benchmark. The performance of the model was further validated in forecast mode using an independent verification wet-season dataset from 2015–16 that was not used to define or train the model. The eight-predictor model was found to produce a probability forecast with robust skill relative to climatology and superior to the benchmark waterspout index in both the cross validation and in the independent verification.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference29 articles.

1. A new look at the statistical model identification;Akaike;IEEE Trans. Automat. Contr.,1974

2. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models;Austin;Stat. Methods Med. Res.,2014

3. Baseline climatology of sounding derived parameters associated with deep, moist convection;Craven;Natl. Wea. Dig.,2004

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3