Observational Estimates of the Horizontal Eddy Diffusivity and Mixing Length in the Low-Level Region of Intense Hurricanes

Author:

Zhang Jun A.1,Montgomery Michael T.2

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida

2. NOAA/AOML/Hurricane Research Division, Miami, Florida, and Naval Postgraduate School, Department of Meteorology, Monterey, California

Abstract

Abstract This study examines further the characteristics of turbulent flow in the low-level region of intense hurricanes using in situ aircraft observations. The data analyzed here are the flight-level data collected by research aircraft that penetrated the eyewalls of category-5 Hurricane Hugo (1989), category-4 Hurricane Allen (1980), and category-5 Hurricane David (1979) between 1 km and the sea surface. Estimates of horizontal eddy momentum flux, horizontal eddy diffusivity, and horizontal mixing length are obtained. It is found that the horizontal momentum flux and horizontal diffusivity increase with increasing wind speed. The horizontal mixing length increases slightly with wind speed also, but the mixing length is not significantly dependent on the wind speed. The magnitude of the horizontal momentum flux is found to be comparable to that of the vertical momentum flux, indicating that horizontal mixing by turbulence becomes nonnegligible in the hurricane boundary layer, especially in the eyewall region. Within the context of simple K theory, the results suggest that the average horizontal eddy diffusivity and mixing length are approximately 1500 m2 s−1 and 750 m, respectively, at about 500 m in the eyewall region corresponding to the mean wind speed of approximately 52 m s−1. It is recalled also that the mixing length is a virtual scale in numerical models and is quantitatively smaller than the energy-containing scale of turbulent eddies. The distinction between these two scales is a useful reminder for the modeling community on the representation of small-scale turbulence in hurricanes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3