Interannual Variability of Indian Summer Monsoon arising from Interactions between Seasonal Mean and Intraseasonal Oscillations

Author:

Suhas E.1,Neena J. M.1,Goswami B. N.1

Affiliation:

1. Indian Institute of Tropical Meteorology, Pashan, Pune, India

Abstract

Abstract A significant fraction of interannual variability (IAV) of the Indian summer monsoon (ISM) is known to be governed by “internal” dynamics arising from interactions between high-frequency fluctuations and the annual cycle. While several studies indicate that monsoon intraseasonal oscillations (MISOs) are at the heart of such internal IAV of the monsoon, the exact mechanism through which MISOs influence the seasonal mean monsoon IAV has remained elusive so far. Here it is proposed that exchange of kinetic energy (KE) between the seasonal mean and MISOs provides a conceptual framework for understanding the role of intraseasonal oscillations (ISOs) in causing IAV and interdecadal variability (IDV) of the ISM. The rate of KE exchange between seasonal mean and ISOs is calculated in frequency domain for each Northern Hemispheric summer season over the ISM domain, using 44 yr of the 40-yr ECMWF Re-Analysis (ERA-40) data. The seasonal mean KE and the rate of KE exchange between seasonal mean and ISO shows a significant relationship at both the 850- and 200-hPa pressure levels. Since the rate of KE exchange between seasonal mean and ISO is found to be independent of known external forcing, the variability in seasonal mean KE arising from this exchange process can be considered as an internal component explaining about 20% of IAV and about 50% of IDV. Contrary to the many modeling studies attributing the weakening of tropical circulation to the stabilization of the atmosphere by global warming, this paper provides an alternative view that internal dynamics arising from scale interactions might be playing a significant role in determining the decreasing strength of the monsoon circulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3