Effect of Top and Bottom Boundary Conditions on Symmetric Instability under Full-Component Coriolis Force

Author:

Itano Toshihisa1,Kasahara Akira2

Affiliation:

1. Department of Earth and Ocean Sciences, National Defense Academy, Yokosuka, Japan

2. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract The linear stability of a zonal flow confined in a domain within horizontal top and bottom boundaries is examined under full consideration of the Coriolis force. The basic zonal flow is assumed to be in thermal wind balance with the density field and to be sheared in both vertical and horizontal directions under statically and inertially stable conditions. By imposing top and bottom boundary conditions in this framework, the number of wave modes increases to four, instead of two in an unbounded domain, as already reported in studies on internal gravity waves. The four modes are classified into two pairs of high- and low-frequency modes: the high modes are superinertial and the low modes are subinertial. The discriminant of symmetric instability is nevertheless determined by the sign of the potential vorticity of the basic zonal flow, as in the case of an unbounded domain. The solutions satisfying the top and bottom boundary conditions are interpreted as the superposition of incident and reflected waves, revealing that the neutral solutions consist of two neutral plane waves with oppositely directed vertical group velocities. This may explain why the properties of wave behavior, such as the instability criteria, remain the same in both the bounded and unbounded domains, although the manifestation of wave activity, such as the order of dispersion relation, is quite different in the two cases. Furthermore, the slope of the constant momentum surface, the slope of the isopycnic surface including the nontraditional effect of the Coriolis force, and the ratio between the frequencies of gravity and inertial waves form an essential set of parameters for symmetric motion. The combination of these dimensionless quantities determines the fundamental nature of symmetric motions, such as stability, regardless of boundary conditions with and without the horizontal component of the planetary vorticity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3