The Lower-Stratospheric Response to 11-Yr Solar Forcing: Coupling to the Troposphere–Ocean Response

Author:

Hood Lon L.1,Soukharev Boris E.1

Affiliation:

1. Lunar and Planetary Laboratory, The University of Arizona, Tucson, Arizona

Abstract

Abstract The origin of the tropical lower-stratospheric response to 11-yr solar forcing and its possible coupling to a troposphere–ocean response is investigated using multiple linear regression (MLR) analyses of stratospheric ozone and temperature data over the 1979–2009 period and tropospheric sea level pressure (SLP) data over the 1880–2009 period. Stratospheric MLR results, comparisons with simulations from a chemistry–climate model, and analyses of decadal variations of meridional eddy heat flux indicate that the tropical lower-stratospheric response is produced mainly by a solar-induced modulation of the Brewer–Dobson circulation (BDC), with a secondary contribution from the Hadley circulation in the lowermost stratosphere. MLR analyses of long-term SLP data confirm previous results indicating a distinct positive response, on average, during the northern winter season in the North Pacific. The mean response in the Northern Hemisphere resembles a positive Arctic Oscillation mode and can also be characterized as “La Niña–like,” implying a reduction of Rossby wave forcing, a weakening of the BDC, and an increase in tropical lower-stratospheric ozone and temperature near solar maxima. However, MLR analyses of different time periods show that the Pacific SLP response is not always present during every cycle; it was most clearly detected mainly during the ~1938–93 period when 11-yr solar variability was especially strong. During the 1979–93 period, the SLP response was strongly present when the lower-stratospheric responses were large. But during the 1994–2009 period, the SLP response was much less significant and the lower-stratospheric responses were weak, supporting the hypothesis that the lower-stratospheric and surface climate responses are dynamically coupled.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3