Potential Vorticity of the Madden–Julian Oscillation

Author:

Zhang Chidong1,Ling Jian1

Affiliation:

1. RSMAS, University of Miami, Miami, Florida

Abstract

Abstract This study explores the extent to which the dynamical structure of the Madden–Julian oscillation (MJO), its evolution, and its connection to diabatic heating can be described in terms of potential vorticity (PV). The signature PV structure of the MJO is an equatorial quadrupole of cyclonic and anticyclonic PV that tilts westward and poleward. This PV quadrupole is closely related to positive and negative anomalies in precipitation that are in a swallowtail pattern extending eastward along the equator and splitting into off-equatorial branches westward. Two processes dominate the generation of MJO PV. One is linear, involving MJO diabatic heating alone. The other is nonlinear, involving diabatic heating and relative vorticity of perturbations spectrally outside the MJO domain but spatially constrained to the MJO convective envelope. The MJO is thus partially a self-sustaining system and partially a consequence of scale interaction of MJO-constrained stochastic processes. Convective initiation of the MJO over the Indian Ocean features a swallowtail pattern of negative anomalous precipitation and associated anticyclonic PV anomalies at the early stage, and increasing cyclonic PV generation straddling the equator in the midtroposphere due to increasing positive anomalies in precipitation. These lead to the swallowtail pattern in positive anomalous precipitation and the associated PV quadrupole that signifies the fully developed MJO. The equatorial Kelvin and Rossby waves bear PV structures distinct from that of the MJO. They contribute insignificantly to the structure and generation of MJO PV. Solely based on the PV analysis, a hypothesis is proposed that the fundamental dynamics of the MJO depends on neither Kelvin nor Rossby waves.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3