Long-Term Variability of Daily North Atlantic–European Pressure Patterns since 1850 Classified by Simulated Annealing Clustering

Author:

Philipp A.1,Della-Marta P. M.2,Jacobeit J.1,Fereday D. R.3,Jones P. D.4,Moberg A.5,Wanner H.2

Affiliation:

1. Institute of Geography, University of Augsburg, Augsburg, Germany

2. Institute of Geography, University of Bern, Bern, Switzerland

3. Hadley Centre for Climate Prediction and Research, Met Office, Exeter, United Kingdom

4. Climatic Research Unit, University of East Anglia, Norwich, United Kingdom

5. Department of Meteorology, Stockholm University, Stockholm, Sweden

Abstract

Abstract Reconstructed daily mean sea level pressure patterns of the North Atlantic–European region are classified for the period 1850 to 2003 to explore long-term changes of the atmospheric circulation and its impact on long-term temperature variability in the central European region. Commonly used k-means clustering algorithms resulted in classifications of low quality because of methodological deficiencies leading to local optima by chance for complex datasets. In contrast, a newly implemented clustering scheme combining the concepts of simulated annealing and diversified randomization (SANDRA) is able to reduce substantially the influence of chance in the cluster assignment, leading to partitions that are noticeably nearer to the global optimum and more stable. The differences between conventional cluster analysis and the SANDRA scheme are significant for subsequent analyses of single clusters—in particular, for trend analysis. Conventional indices used to determine the appropriate number of clusters failed to provide clear guidance, indicating that no distinct separation between clusters of circulation types exists in the dataset. Therefore, the number of clusters is determined by an external indicator, the so-called dominance criteria for t-mode principal component analysis. Nevertheless, the resulting partitions are stable for certain numbers of clusters and provide meaningful and reproducible clusters. The resulting types of pressure patterns reveal pronounced long-term variability and various significant trends of the time series of seasonal cluster frequency. Tentative estimations of central European temperature changes based solely on seasonal cluster frequencies can explain between 33.9% (summer) and 59.0% (winter) of temperature variance on the seasonal time scale. However, the signs of long-term changes in temperature are correctly reproduced even on multidecadal–centennial time scales. Moreover, linear warming trends are reproduced, implying from one-third up to one-half of the observed temperature increase between 1851/52 and 2003 (except for summer, but with significant trends for spring and autumn), indicating that changes in daily circulation patterns contribute to the observed overall long-term warming in the central European region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3