On the Role of Temperature and Salinity Data Assimilation to Constrain a Coupled Physical–Biogeochemical Model in the Baltic Sea

Author:

Fu Weiwei1

Affiliation:

1. Center for Ocean and Ice, Danish Meteorological Institute, Copenhagen, Denmark, and Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractA three-dimensional variational data assimilation (3DVAR) method is implemented in a coupled physical–biogeochemical (CPB) model in the Baltic Sea. This study carries out a 10-yr assimilation experiment with satellite sea surface temperature (SST) and observed in situ temperature (T) and salinity (S) profiles. The impact of the assimilation is assessed with the focus on how the biogeochemical model responds to the improved hydrodynamics. The assimilation of temperature and salinity data yields considerable improvements in the physical model. On a basin scale, the mean bias of SST, T, S, and mixed layer depth (MLD) is decreased by 0.18°C (57%), 0.31°C (49%), 0.34 psu (43%), and 1.8 m (43%), respectively. More importantly, the biogeochemical simulation is improved in response to the physical data assimilation. Compared with in situ observations, the mean biases of chlorophyll a (Chl), dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are decreased by 0.09 mg m−3 (15.5%), 0.19 mmol m−3 (9%), and 0.15 mmol m−3 (23%). Physical data assimilation also improves the simulated variability of Chl, DIN, and DIP and their correlations with observation. Compared with satellite observations, the mean bias of surface chlorophyll is reduced by 0.10–0.32 mg m−3 especially in the Skagerrak–Kattegat area and Bornholm basin. The decrease of total Chl change is caused by different mechanisms for winter and summer. While the deepened mixed layer acts as a dilution factor in winter, strengthened stratification agrees well with the decrease of chlorophyll in summer. In the vertical, relatively large changes of DIN and DIP occur below 60 m, which corresponds to the mean permanent halocline depth (~60–80 m) of the Baltic Sea.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3