Hydrography, Circulation, and Mixing at the Calypso Deep (the Deepest Mediterranean Trough) during 2006–09

Author:

Kontoyiannis H.1,Lykousis V.1,Papadopoulos V.1,Stavrakakis S.1,Anassontzis E. G.2,Belias A.3,Koutsoukos S.3,Resvanis L. K.4

Affiliation:

1. Institute of Oceanography, Hellenic Center for Marine Research, Anavyssos, Greece

2. Physics Department, University of Athens, Athens, Greece

3. NESTOR Institute for Deep Sea Technology and Neutrino Astroparticle Physics, National Observatory of Athens, Pylos, Greece

4. Physics Department, University of Athens, and NESTOR Institute for Deep Sea Technology and Neutrino Astroparticle Physics, National Observatory of Athens, Pylos, Greece

Abstract

AbstractThe mass and flow fields from June 2006 to May 2009 in the Calypso Deep (bottom depth ~5.2 km) are investigated using eddy-resolving surface-to-bottom hydrography (station grid spacing ~0.2°) and two tall moorings yielding current-meter records at depths from 700 m to near bottom. A salty warm lens (excess core salinity and temperature are ~0.01 and 0.025°C relative to the surrounding water) of Cretan Deep Water with a core at ~3000 m and a horizontal (vertical) scale of ~50 km (1.5 km) is identified in June 2006 to be locked over the trough. The lens coincides with local maxima in dissolved oxygen. In October 2006 the salinity content of the lens and of all deeper layers is increased; the oxygen maxima are shifted to the bottom layers, indicating an episodic intrusion of higher-density ventilated Adriatic water. The circulation changes from anticyclonic at all depths in June 2006 to cyclonic below ~2.5 km in October 2006, whereas after January 2007 it is cyclonic at all instrumented depths. The measured currents are weak (mean speeds < 5 cm s−1) and persistent in direction, being mostly along the bottom topography at all current-meter depths. After October 2006, the lens erodes due to salt/heat loss caused predominantly by lateral (intrusive) mixing, which works from the outside toward the lens center. The horizontal diffusivity is on the order of ~10 m2 s−1, near the center of the lens, and ~102 to 103 m2 s−1, at its periphery, with an average error ~15 times the diffusivity value. In the deepest part of the trough and in periods of predominance of vertical mixing the vertical diffusivity at 4400 m is ~(4 ± 3) × 10−3 m2 s−1.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3