Energy Exchanges between Density Fronts and Near-Inertial Waves Reflecting off the Ocean Surface

Author:

Grisouard Nicolas1,Thomas Leif N.2

Affiliation:

1. Department of Environmental Earth System Science, Stanford University, Stanford, California, and Department of Physics, University of Toronto, Toronto, Ontario, Canada

2. Department of Environmental Earth System Science, Stanford University, Stanford, California

Abstract

AbstractInertial waves propagating upward in a geostrophically balanced front experience critical reflections against the ocean surface. Such reflections naturally create oscillations with small vertical scales, and viscous friction becomes a dominant process. Here, friction modifies the polarization relations of internal waves and allows energy from the balanced front to be exchanged with the ageostrophic motions and eventually dissipated. In addition, while in the well-known inviscid case internal waves propagate on only two characteristics, this study demonstrates using an analytical model that strong viscous effects introduce additional oscillatory modes that can exchange energy with the front. Moreover, during a linear, near-critical reflection, the superposition of several of these oscillations induces an even stronger energy exchange with the front. When the Richardson number based on the frontal thermal wind shear is O(1), the rate of energy exchange peaks at wave frequencies that are near inertial and is comparable in magnitude to the energy flux of the incident, upward-propagating waves. Two-dimensional, linear numerical experiments confirm this finding. The analytical model also demonstrates that this process is qualitatively insensitive to the actual value of the viscosity or the form of the boundary condition at the surface. In fully nonlinear experiments, the authors recover these qualitative conclusions. However, nonlinear wave–wave interactions and turbulence in particular, strongly modify the amount of energy that is exchanged with the front. In practice, such nonlinear effects are only active when the incident waves have frequencies higher than the Coriolis frequency, since these configurations are conducive to near-resonant triad interactions between incident and reflected waves.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3