Affiliation:
1. Department of Atmospheric and Oceanic Science, McGill University, Montreal, Québec, Canada
Abstract
AbstractUsing primitive equation simulations, a zonally periodic channel is considered. The channel flow is forced by a combination of steady and high-frequency winds. The high-frequency forcing excites near-inertial motion, and the focus is on how this influences the low-frequency, nearly geostrophic part of the flow. In particular, this study seeks to clarify how Reynolds stresses exerted by the near-inertial modes affect the low-frequency kinetic energy. In the system considered, the near-inertial Reynolds stresses (i) serve as a sink term in the low-frequency kinetic energy budget and (ii) transfer low-frequency kinetic energy downward from the mixed layer. Transfer spectra show the bulk of this sink to occur at relatively small horizontal wavenumber (i.e., in the mesoscale, not the submesoscale). The presence of near-inertial motion can also affect the kinetic-to-potential energy exchanges, especially within the low-frequency band.
Publisher
American Meteorological Society
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献