Stationary Sea Surface Height Anomalies in Cyclonic Boundary Currents: Conservation of Potential Vorticity and Deviations from Strict Topographic Steering

Author:

Broomé Sara1,Nilsson Johan1

Affiliation:

1. Stockholm University, Stockholm, Sweden

Abstract

AbstractIn high-latitude subpolar seas, such as the Nordic seas and the Labrador Sea, time-mean geostrophic currents mediate the bulk of the meridional oceanic heat transport. These currents are primarily encountered along the continental slopes as intense cyclonic boundary currents, which, because of the relatively weak stratification, should be strongly steered by the bottom topography. However, analyses of hydrographic and satellite altimetric data along depth contours in Nordic seas boundary currents reveal some remarkable, stationary, along-stream variations in the depth-integrated buoyancy and bottom pressure. A closer examination shows that these variations are linked to changes in steepness and curvature of the continental slope. To examine the underlying dynamics, a steady-state model of a cyclonic stratified boundary current over a topographic slope is developed in the limit of small Rossby numbers. Based on potential vorticity conservation, equations for the zeroth- and first-order pressure and buoyancy fields are derived. To the lowest order, the flow is completely aligned with the bottom topography. However, the first-order results show that where the lowest-order flow increases (decreases) its relative vorticity along a depth contour, the first-order pressure and depth-integrated buoyancy increase (decrease). This response is associated with cross-isobath flows, which induce stretching/compression of fluid elements that compensates for the changes in relative vorticity. The model-predicted along-isobath variations in pressure and depth-integrated buoyancy are comparable in magnitude to the ones found in the observational data from the Nordics Seas.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3