Eddy Phase Speeds in a Two-Layer Model of Quasigeostrophic Baroclinic Turbulence with Applications to Ocean Observations

Author:

Wang Lei1,Jansen Malte1,Abernathey Ryan2

Affiliation:

1. The University of Chicago, Chicago, Illinois

2. Columbia University, New York, New York

Abstract

AbstractThe phase speed spectrum of ocean mesoscale eddies is fundamental to understanding turbulent baroclinic flows. Since eddy phase propagation has been shown to modulate eddy fluxes, an understanding of eddy phase speeds is also of practical importance for the development of improved eddy parameterizations for coarse resolution ocean models. However, it is not totally clear whether and how linear Rossby wave theory can be used to explain the phase speed spectra in various weakly turbulent flow regimes. Using linear analysis, theoretical constraints are identified that control the eddy phase speed in a two-layer quasigeostrophic (QG) model. These constraints are then verified in a series of nonlinear two-layer QG simulations, spanning a range of parameters with potential relevance to the ocean. In the two-layer QG model, the strength of the inverse cascade exerts an important control on the eddy phase speed. If the inverse cascade is weak, the phase speed spectrum is reasonably well approximated by the phase speed of the linearly most unstable mode. A significant inverse cascade instead leads to barotropization, which in turn leads to mean phase speeds closer to those of barotropic-mode Rossby waves. The two-layer QG results are qualitatively consistent with the observed eddy phase speed spectra in the Antarctic Circumpolar Current and may also shed light on the interpretation of phase speed spectra observed in other regions.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3