Affiliation:
1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
Abstract
Abstract
During fall/winter off the Oregon coast, oceanographic surveys are relatively scarce because of rough weather conditions. This challenge has been overcome by the use of autonomous underwater gliders deployed along the Newport hydrographic line (NH-Line) nearly continuously since 2006. The discharge from the coastal rivers between northern California and the NH-Line reach several thousands of cubic meters per second, and the peaks are comparable to the discharge from the Columbia River. This freshwater input creates cross-shelf density gradients that together with the wind forcing and the large-scale Davidson Current results in strong northward velocities over the shelf. A persistent coastal current during fall/winter, which the authors call the Oregon Coastal Current (OCC), has been revealed by the glider dataset. Based on a two-layer model, the dominant forcing mechanism of the OCC is buoyancy, followed by the Davidson Current and then the wind stress, accounting for 61% (±22.6%), 26% (±18.6%), and 13% (±11.7%) of the alongshore transports, respectively. The OCC average velocities vary from 0.1 to over 0.5 m s−1, and transports are on average 0.08 (±0.07) Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1), with the maximum observed value of 0.49 Sv, comparable to the summertime upwelling jet off the Oregon coast. The OCC is a surface-trapped coastal current, and its geometry is highly affected by the wind stress, consistent with Ekman dynamics. The wind stress has an overall small direct contribution to the alongshore transport; however, it plays a primary role in modifying the OCC structure. The OCC is a persistent, key component of the fall/winter shelf dynamics and influences the ocean biogeochemistry off the Oregon coast.
Publisher
American Meteorological Society
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献