An Improved Second-Moment Closure Model of Langmuir Turbulence

Author:

Harcourt Ramsey R.1

Affiliation:

1. Applied Physics Laboratory, University of Washington, Seattle, Washington

Abstract

AbstractA prior second-moment closure (SMC) model of Langmuir turbulence in the upper ocean is modified by introduction of inhomogeneous pressure–strain rate and pressure–scalar gradient closures that are similar to the high Reynolds number, near-wall treatments for solid wall boundaries. This repairs several near-surface defects in the algebraic Reynolds stress model (ARSM) of the prior SMC by redirecting Craik–Leibovich (CL) vortex force production of turbulent kinetic energy out of the surface-normal vertical component and into a horizontal one, with an associated reduction in near-surface CL production of vertical momentum flux. A surface-proximity function introduces a new closure parameter that is tuned to previous results from large-eddy simulations (LES), and a numerical SMC model based on stability functions from the new ARSM produces improved comparisons with mean profiles of momentum and TKE components from steady-state LES results forced by aligned wind and waves. An examination of higher-order quasi-homogeneous closures and a numerical simulation of Langmuir turbulence away from the boundaries both show the near-surface inhomogeneous closure to be both necessary for consistency and preferable for simplicity.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3