Double Diffusion in Saline Powell Lake, British Columbia

Author:

Scheifele Benjamin1,Pawlowicz Rich1,Sommer Tobias2,Wüest Alfred3

Affiliation:

1. Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada

2. Surface Waters Research and Management, Eawag, Kastanienbaum, and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland

3. Surface Waters Research and Management, Eawag, Kastanienbaum, and Margaretha Kamprad Chair, Physics of Aquatic Systems Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract

Abstract Powell Lake contains a deep layer of relic seawater separated from the ocean since the last ice age. Permanently stratified and geothermally heated from below, this deep layer is an isolated geophysical domain suitable for studying double-diffusive convection. High-resolution CTD and microstructure measurements show several double-diffusive staircases (Rρ = 1.6 to 6) in the deep water, separated vertically by smooth high-gradient regions with much larger density ratios. The lowest staircase contains steps that are laterally coherent on the basin scale and have a well-defined vertical structure. On average, temperature steps in this staircase are 4 mK, salinity steps are 2 mg kg−1, and mixed layer heights are 70 cm. The CTD is capable of measuring bulk characteristics of the staircase in both temperature and salinity. Microstructure measurements are limited to temperature alone, but resolve the maximum temperature gradients in the center of selected laminar interfaces. Two different algorithms for characterizing the staircase are compared. Consistent estimates of the steady-state heat flux (27 mW m−2) are obtained from measurements above and below the staircase, as well as from microstructure measurements in the center of smooth interfaces. Estimates obtained from bulk interface gradients underestimate the steady-state flux by nearly a factor of 2. The mean flux calculated using a standard 4/3 flux law parameterization agrees well with the independent estimates, but inconsistencies between the parameterization and the observations remain. These inconsistencies are examined by comparing the underlying scaling relationship to the measurements.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3