Affiliation:
1. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California
Abstract
AbstractA submesoscale filament of dense water in the oceanic surface layer can undergo frontogenesis with a secondary circulation that has a surface horizontal convergence and downwelling in its center. This occurs either because of the mesoscale straining deformation or because of the surface boundary layer turbulence that causes vertical eddy momentum flux divergence or, more briefly, vertical momentum mixing. In the latter case the circulation approximately has a linear horizontal momentum balance among the baroclinic pressure gradient, Coriolis force, and vertical momentum mixing, that is, a turbulent thermal wind. The frontogenetic evolution induced by the turbulent mixing sharpens the transverse gradient of the longitudinal velocity (i.e., it increases the vertical vorticity) through convergent advection by the secondary circulation. In an approximate model based on the turbulent thermal wind, the central vorticity approaches a finite-time singularity, and in a more general hydrostatic model, the central vorticity and horizontal convergence are amplified by shrinking the transverse scale to near the model’s resolution limit within a short advective period on the order of a day.
Publisher
American Meteorological Society
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献