A New Model of Current Retroflection Applied to the Westward Protrusion of the Agulhas Current

Author:

Arruda Wilton1,Zharkov Volodymyr2,Deremble Bruno3,Nof Doron4,Chassignet Eric2

Affiliation:

1. Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, and Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

2. Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida

3. Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida

4. Department of Earth, Ocean and Atmospheric Science, and Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida

Abstract

Abstract The dynamics of current retroflection and rings shedding are not yet fully understood. In this paper, the authors develop an analytical model of the Agulhas Current retroflection dynamics using three simple laws: conservation of volume, momentum balance, and Bernoulli’s principle. This study shows that, for a retroflecting current with a small Rossby number, this theoretical model is in good agreement with numerical simulations of a reduced-gravity isopycnal model. Otherwise, the retroflection position becomes unstable and quickly propagates upstream, leaving a chain of eddies in its path. On the basis of these findings, the authors hypothesize that the westward protrusion of the Agulhas retroflection and the local “zonalization” of the Agulhas Current after it passes the Agulhas Bank are stable only for small Rossby numbers. Otherwise, the retroflection shifts toward the eastern slope of the Agulhas Bank, where its position stabilizes due to the slanted configuration of the slope. This study shows that this scenario is in good agreement with several high-resolution numerical models.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3