Convergence Issues in the Estimation of Interchannel Correlated Observation Errors in Infrared Radiance Data

Author:

Gauthier Pierre1,Du Ping2,Heilliette Sylvain3,Garand Louis3

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Québec in Montréal, Montréal, Québec, Canada

2. Meteorological Service of Canada, Dorval, Québec, Canada

3. Meteorological Research Division, Environment and Climate Change Canada, Dorval, Québec, Canada

Abstract

Abstract A posteriori consistency diagnostics have been used in recent years to estimate correlated observation error. These diagnostics provide an estimate of what the observation error covariances should be and could, in turn, be introduced in the assimilation to improve the statistical consistency between the error statistics used in the assimilation and those obtained from observation departures with respect to the background and the analysis. To estimate the observation error covariances, it is often assumed that the background error statistics are optimal, an assumption that is open to criticism. The consequence is that if the background error covariances are in error, then the estimated observation error statistics will adjust accordingly to fit the innovation error covariances. In this paper, the RTTOV radiative transfer model is used as the observation operator. Using controlled experiments, the background error is considered fixed, and it is shown that the iterative procedure to estimate the observation error may require more than one iteration. It is also shown that the underlying matrix equation being solved can be factorized, and the exact solution can be obtained. If the true background error covariances are used in the assimilation, the estimated observation error covariances are then obtained by subtracting the background error covariances from those of the innovations. This can be applied to the full set of assimilated observations. Using the Environment Canada assimilation system, the results for several types of observations indicate that the background error estimation would deserve additional attention.

Funder

Natural Sciences and Engineering Research Council of Canada

Environment Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3