On the Anomalous Counterclockwise Turning of the Surface Wind with Time in the Plains of the United States

Author:

Bluestein Howard B.1,Romine Glen S.2,Rotunno Richard2,Reif Dylan W.1,Weiss Christopher C.3

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. National Center for Atmospheric Research, Boulder, Colorado

3. Department of Geosciences, Texas Tech University, Lubbock, Texas

Abstract

Vertical shear in the boundary layer affects the mode of convective storms that can exist if they are triggered. In western portions of the southern Great Plains of the United States, vertical shear, in the absence of any transient features, changes diurnally in a systematic way, thus leading to a preferred time of day for the more intense modes of convection when the shear, particularly at low levels, is greatest. In this study, yearly and seasonally averaged wind observations for each time of day are used to document the diurnal variations in wind at the surface and in the boundary layer, with synoptic and mesoscale features effectively filtered out. Data from surface mesonets in Oklahoma and Texas, Doppler wind profilers, instrumented tower data, and seasonally averaged wind data for each time of day from convection-allowing numerical model forecasts are used. It is shown through analysis of observations and model data that the perturbation wind above anemometer level turns in a clockwise manner with time, in a manner consistent with prior studies, yet the perturbation wind at anemometer level turns in an anomalous, counterclockwise manner with time. Evidence is presented based on diagnosis of the model forecasts that the dynamics during the early evening boundary layer transition are, in large part, responsible for the behavior of the hodographs at that time: as vertical mixing in the boundary layer diminishes, the drag on the wind at anemometer level persists, leading to rapid deceleration of the meridional component of the wind. This deceleration acts to turn the wind to the left rather than to the right, as would be expected from the Coriolis force alone.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3