Affiliation:
1. School of Meteorology, University of Oklahoma, Norman, Oklahoma
2. National Center for Atmospheric Research, Boulder, Colorado
3. Department of Geosciences, Texas Tech University, Lubbock, Texas
Abstract
Vertical shear in the boundary layer affects the mode of convective storms that can exist if they are triggered. In western portions of the southern Great Plains of the United States, vertical shear, in the absence of any transient features, changes diurnally in a systematic way, thus leading to a preferred time of day for the more intense modes of convection when the shear, particularly at low levels, is greatest. In this study, yearly and seasonally averaged wind observations for each time of day are used to document the diurnal variations in wind at the surface and in the boundary layer, with synoptic and mesoscale features effectively filtered out. Data from surface mesonets in Oklahoma and Texas, Doppler wind profilers, instrumented tower data, and seasonally averaged wind data for each time of day from convection-allowing numerical model forecasts are used. It is shown through analysis of observations and model data that the perturbation wind above anemometer level turns in a clockwise manner with time, in a manner consistent with prior studies, yet the perturbation wind at anemometer level turns in an anomalous, counterclockwise manner with time. Evidence is presented based on diagnosis of the model forecasts that the dynamics during the early evening boundary layer transition are, in large part, responsible for the behavior of the hodographs at that time: as vertical mixing in the boundary layer diminishes, the drag on the wind at anemometer level persists, leading to rapid deceleration of the meridional component of the wind. This deceleration acts to turn the wind to the left rather than to the right, as would be expected from the Coriolis force alone.
Funder
National Science Foundation
Publisher
American Meteorological Society
Reference53 articles.
1. Appalachian Cold-Air Damming
2. Boundary Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions
3. Bluestein, H. B., 1992: Principles of Kinematics and Dynamics. Vol. 1, Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, 448 pp.
4. The Formation and Early Evolution of the Greensburg, Kansas, Tornadic Supercell on 4 May 2007
5. Bluestein, H. B., 2013: Severe Convective Storms and Tornadoes: Observations and Dynamics. Springer, 456 pp. https://doi.org/10.1007/978-3-642-05381-8.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献