Ensemble Kalman Filter Data Assimilation for the Model for Prediction Across Scales (MPAS)

Author:

Ha Soyoung1,Snyder Chris1,Skamarock William C.1,Anderson Jeffrey1,Collins Nancy1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

Abstract

A global atmospheric analysis and forecast system is constructed based on the atmospheric component of the Model for Prediction Across Scales (MPAS-A) and the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The system is constructed using the unstructured MPAS-A Voronoi (nominally hexagonal) mesh and thus facilitates multiscale analysis and forecasting without the need for developing new covariance models at different scales. Cycling experiments with the assimilation of real observations show that the global ensemble system is robust and reliable throughout a one-month period for both quasi-uniform and variable-resolution meshes. The variable-mesh assimilation system consistently provides higher-quality analyses than those from the coarse uniform mesh, in addition to the benefits of the higher-resolution forecasts, which leads to substantial improvements in 5-day forecasts. Using the fractions skill score, the spatial scale for skillful precipitation forecasts is evaluated over the high-resolution area of the variable-resolution mesh. Skill decreases more rapidly at smaller scales, but the variable mesh consistently outperforms the coarse uniform mesh in precipitation forecasts at all times and thresholds. Use of incremental analysis updates (IAU) greatly decreases high-frequency noise overall and improves the quality of EnKF analyses, particularly in the tropics. Important aspects of the system design related to the unstructured Voronoi mesh are also investigated, including algorithms for handling the C-grid staggered horizontal velocities.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3