WRF Hindcasts of Cold Front Passages over the ARM Eastern North Atlantic Site: A Sensitivity Study

Author:

Lamraoui Fayçal1,Booth James F.1,Naud Catherine M.2

Affiliation:

1. City College of the City University of New York, New York, New York

2. Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

Abstract

Abstract The present study explores the ability of the Weather Research and Forecasting (WRF) Model to accurately reproduce the passage of extratropical cold fronts at the DOE ARM eastern North Atlantic (ENA) observation site on the Azores. An analysis of three case studies is performed in which the impact of the WRF domain size, position of the model boundary relative to the ENA site, grid spacing, and spectral nudging conditions are explored. The results from these case studies indicate that model biases in the timing and duration of cold front passages change with the distance between the model domain boundary and the ENA site. For these three cases, if the western model boundary is farther than 1500 km from the site, the front becomes too meridional and fails to reach the site, making 1000 or 1500 km the optimal distances. In contrast, integrations with small distances (e.g., 500 km) between the site and domain boundaries have inadequate spatial spinup (i.e., the domain is too small for the model to properly stabilize). For all three cases, regardless of domain size, the model has biases in its upper-level circulation that impact the position and timing of the front. However, this issue is most serious for 4000-km2 domains and larger. For these domains, prolonged spectral nudging can correct cold front biases. As such, this analysis provides a framework to optimize the WRF Model configuration necessary for a realistic hindcast of a cold front passage at a fixed location centered in a domain as large as computationally possible.

Funder

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3