Inferring Fall Attitudes of Pristine Dendritic Crystals from Polarimetric Radar Data

Author:

Matrosov Sergey Y.1,Reinking Roger F.2,Djalalova Irina V.2

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado

2. Science and Technology Corp., and NOAA/Environmental Technology Laboratory, Boulder, Colorado

Abstract

Abstract Single pristine planar ice crystals exhibit some flutter around their preferential horizontal orientation as they fall. This study presents estimates of flutter and analyzes predominant fall attitudes of pristine dendritic crystals observed with a polarization agile Ka-band cloud radar. The observations were made in weakly precipitating winter clouds on slopes of Mt. Washington, New Hampshire. The radar is capable of measuring the linear depolarization ratios in the standard horizontal–vertical polarization basis (HLDR) and the slant 45°–135° polarization basis (SLDR). Both HLDR and SLDR depend on crystal shape. HLDR also exhibits a strong dependence on crystal orientation, while SLDR depends only weakly on orientation. The different sensitivities of SLDR and HLDR to the shape and orientation effects are interpreted to estimate the angular flutter of crystals. A simple analytical expression is derived for the standard deviation of angular flutter as a function of the HLDR to SLDR ratio assuming perfect radar system characteristics. The flutter is also assessed by matching theoretical and observed depolarization patterns as a function of the elevation of the radar’s beam. The matching procedure is generally more robust since it accounts for the actual polarization states and imperfections in the radar hardware. The depolarization approach was used to estimate flutter of falling pristine dendrites that were characterized by Reynolds numbers in a range of approximately 40–100. Using the matching approach, this flutter was found to be about 9° ± 3°, as expressed by the standard deviation of the crystal minor axes from the vertical direction. The analytical expression provides a value of flutter of about 12°, which is at the high end of the estimate obtained by the matching procedure. The difference is explained by the imperfections in the polarization states and radar hardware, so the analytical result serves as an upper bound to the more robust result from matching. The values of flutter estimated from the experimental example are comparable to estimates for planar crystals obtained in laboratory models and by individual crystal sampling.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3