Numerical Simulations of the Wake of Kauai

Author:

Lane Todd P.1,Sharman Robert D.2,Frehlich Rod G.3,Brown John M.4

Affiliation:

1. School of Earth Sciences, The University of Melbourne, Melbourne, Australia, and National Center for Atmospheric Research,* Boulder, Colorado

2. National Center for Atmospheric Research,* Boulder, Colorado

3. National Center for Atmospheric Research,* and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado

4. NOAA/Forecast Systems Laboratory, Boulder, Colorado

Abstract

Abstract This study uses a series of numerical simulations to examine the structure of the wake of the Hawaiian island of Kauai. The primary focus is on the conditions on 26 June 2003, which was the day of the demise of the Helios aircraft within Kauai’s wake. The simulations show that, in an east-northeasterly trade wind flow, Kauai produces a well-defined wake that can extend 40 km downstream of the island. The wake is bounded to the north and south by regions of strong vertical and horizontal shear—that is, shear lines. These shear lines mark the edge of the wake in the horizontal plane and are aligned approximately parallel to the upstream flow direction at each respective height. The highest-resolution simulations show that these shear lines can become unstable and break down through Kelvin–Helmholtz instability. The breakdown generates turbulent eddies that are advected both downstream and into the recirculating wake flow. Turbulence statistics are estimated from the simulation using a technique that analyzes model-derived structure functions. A number of sensitivity studies are also completed to determine the influence of the upstream conditions on the structure of the wake. These simulations show that directional shear controls the tilt of the wake in the north–south plane with height. These simulations also show that at lower incident wind speeds the wake has a qualitatively similar structure but is less turbulent. At higher wind speeds, the flow regime changes, strong gravity waves are generated, and the wake is poorly defined. These results are consistent with previous idealized studies of stratified flow over isolated obstacles.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference31 articles.

1. Topographic Effects in Stratified Flows.;Baines,1995

2. Strongly stratified flow past three-dimensional obstacles.;Brighton;Quart. J. Roy. Meteor. Soc.,1978

3. Island wake dynamics and wake influence on the evaporation duct and radar propagation.;Burk;J. Appl. Meteor.,2003

4. Stratified flow over three-dimensional ridges.;Castro;J. Fluid Mech.,1983

5. Mesoscale eddies in wake of islands.;Chopra;J. Atmos. Sci.,1965

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3