Annular versus Nonannular Variability of the Northern Hemisphere Atmospheric Circulation

Author:

Castanheira J. M.1,Liberato M. L. R.2,de la Torre L.3,Graf H-F.4,Rocha A.1

Affiliation:

1. CESAM, Department of Physics, University of Aveiro, Aveiro, Portugal

2. Department of Physics, Universidade de Trás-os-Montes e Alto Douro, Vila Real, and Physics Department, University of Lisbon, Lisbon, Portugal

3. CESAM, Department of Physics, University of Aveiro, Aveiro, Portugal, and University of Vigo at Ourense, Ourense, Spain

4. Centre for Atmospheric Science, Geography Department, University of Cambridge, Cambridge, United Kingdom

Abstract

Abstract The annular variability of the northern winter extratropical circulation is reassessed based on reanalysis data that are dynamically filtered by normal modes. One-half of the variability of the monthly averaged barotropic zonally symmetric circulation of the Northern Hemisphere is statistically distinct from the remaining variability and is represented by its leading empirical orthogonal function (EOF) alone. The daily time series of the circulation anomalies projected onto the leading EOF is highly correlated (r ≥ 0.7) with the lower-stratospheric northern annular mode (NAM) indices showing that annular variability extends from the stratosphere deep into the troposphere. However, the geopotential and wind anomalies associated with the leading principal component (PC1) of the barotropic zonally symmetric circulation are displaced northward relative to the zonal mean anomalies associated with the PC1 of the geopotential height variability at single-isobaric tropospheric levels. The regression pattern of the 500-hPa geopotential height (Z500) onto the lower-stratospheric NAM also shows zonally symmetric components displaced northward with respect to those of the leading EOF of the Z500 field. A principal component analysis (PCA) of the residual variability of the Z500 field remaining after the substraction of the Z500 regressed onto the lower-stratospheric NAM index also reveals a pattern with a zonally symmetric component at midlatitudes. However, this zonally symmetric component appears as the second EOF of the residual variability and is the imprint of two independent dipoles over the Pacific and Atlantic Oceans. Results show that a zonally symmetric component of the middle- and lower-tropospheric circulation variability exists at high latitudes. At the middle latitudes, the zonally symmetric component, if any exists, is artificially overemphasized by the PCA on single-isobaric tropospheric levels.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3