Interannual Variability of Sea Surface Temperature off Java and Sumatra in a Global GCM*

Author:

Du Yan1,Qu Tangdong1,Meyers Gary2

Affiliation:

1. International Pacific Research Center, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

2. Integrated Marine Observing System, University of Tasmania, Hobart, Australia

Abstract

Abstract Using results from the Simple Ocean Data Assimilation (SODA), this study assesses the mixed layer heat budget to identify the mechanisms that control the interannual variation of sea surface temperature (SST) off Java and Sumatra. The analysis indicates that during the positive Indian Ocean Dipole (IOD) years, cold SST anomalies are phase locked with the season cycle. They may exceed −3°C near the coast of Sumatra and extend as far westward as 80°E along the equator. The depth of the thermocline has a prominent influence on the generation and maintenance of SST anomalies. In the normal years, cooling by upwelling–entrainment is largely counterbalanced by warming due to horizontal advection. In the cooling episode of IOD events, coastal upwelling–entrainment is enhanced, and as a result of mixed layer shoaling, the barrier layer no longer exists, so that the effect of upwelling–entrainment can easily reach the surface mixed layer. Horizontal advection spreads the cold anomaly to the interior tropical Indian Ocean. Near the coast of Java, the northern branch of an anomalous anticyclonic circulation spreads the cold anomaly to the west near the equator. Both the anomalous advection and the enhanced, wind-driven upwelling generate the cold SST anomaly of the positive IOD. At the end of the cooling episode, the enhanced surface thermal forcing overbalances the cooling effect by upwelling/entrainment, and leads to a warming in SST off Java and Sumatra.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference45 articles.

1. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present).;Adler;J. Hydrometeor.,2003

2. Is there an Indian Ocean dipole, and is it independent of the El Niño–Southern Oscillation?;Allan;CLIVAR Exchanges,2001

3. A multiyear global surface wind velocity data set using SSM/I wind observations.;Atlas;Bull. Amer. Meteor. Soc.,1996

4. Data assimilation using incremental analysis updates.;Bloom;Mon. Wea. Rev.,1996

5. Salinity.;Boyer,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3