The Tropical Eastern Pacific Seasonal Cycle: Assessment of Errors and Mechanisms in IPCC AR4 Coupled Ocean–Atmosphere General Circulation Models*

Author:

de Szoeke Simon P.1,Xie Shang-Ping2

Affiliation:

1. NOAA/Earth System Research Laboratory, Boulder, Colorado

2. International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract Warmer SST and more rain in the Northern Hemisphere are observed year-round in the tropical eastern Pacific with southerly wind crossing the equator toward the atmospheric heating. The southerlies are minimal during boreal spring, when two precipitation maxima straddle the equator. Fourteen atmosphere–ocean coupled GCMs from the Coupled Model Intercomparison Project (CMIP3) and one coupled regional model are evaluated against observations with simple metrics that diagnose the seasonal cycle and meridional migration of warm SST and rain. Intermodel correlations of the metrics elucidate common coupled physics. These models variously simulate the climatology of SST and ITCZ rain. In 8 out of 15 models the ITCZ alternates symmetrically between the hemispheres with the seasons. This seasonally alternating ITCZ error generates two wind speed maxima per year—one northerly and one southerly—resulting in spurious cooling in March and a cool SST error of the equatorial ocean. Most models have too much rain in the Southern Hemisphere so that SST and rain are too symmetric about the equator in the annual mean. Weak meridional wind on the equator near the South American coast (2°S–2°N, 80°–90°W) explains the warm SST error there. Northeasterly wind jets blow over the Central American isthmus in winter and cool the SST in the eastern Pacific warm pool. In some models the strength of these winds contributes to the early demise of their northern ITCZ relative to observations. The February–April northerly wind bias on the equator is correlated to the antecedent December–February Central American Pacific wind speed at −0.88. The representation of southern-tropical stratus clouds affects the underlying SST through solar radiation, but its effect on the meridional atmospheric circulation is difficult to discern from the multimodel ensemble, indicating that errors other than the simulation of stratus clouds are also important for accurate simulation of the meridional asymmetry. This study identifies several features to be improved in atmospheric and coupled GCMs, including the northeasterly cross–Central American wind in winter and meridional wind on the equator. Improved simulation of the seasonal cycle of meridional wind could alleviate biases in equatorial SST and improve simulation of ENSO and its teleconnections.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference71 articles.

1. ENSO simulation in coupled ocean-atmosphere models: Are the current models better?;AchutaRao;Climate Dyn.,2006

2. Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information.;Adler;J. Appl. Meteor.,2000

3. A climatic feature of the tropical Americas: The trade wind easterly jet.;Amador;Trop. Meteor. Oceanogr.,1998

4. Atmospheric teleconnections from the equatorial Pacific.;Bjerknes;Mon. Wea. Rev.,1969

5. Indian Ocean dipolelike variability in the CSIRO mark 3 coupled climate model.;Cai;J. Climate,2005

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3