The Hydrological Cycle over a Wide Range of Climates Simulated with an Idealized GCM

Author:

O’Gorman Paul A.1,Schneider Tapio1

Affiliation:

1. California Institute of Technology, Pasadena, California

Abstract

Abstract A wide range of hydrological cycles and general circulations was simulated with an idealized general circulation model (GCM) by varying the optical thickness of the longwave absorber. While the idealized GCM does not capture the full complexity of the hydrological cycle, the wide range of climates simulated allows the systematic development and testing of theories of how precipitation and moisture transport change as the climate changes. The simulations show that the character of the response of the hydrological cycle to variations in longwave optical thickness differs in different climate regimes. The global-mean precipitation increases linearly with surface temperature for colder climates, but it asymptotically approaches a maximum at higher surface temperatures. The basic features of the precipitation–temperature relation, including the rate of increase in the linear regime, are reproduced in radiative–convective equilibrium simulations. Energy constraints partially account for the precipitation–temperature relation but are not quantitatively accurate. Large-scale condensation is most important in the midlatitude storm tracks, and its behavior is accounted for using a stochastic model of moisture advection and condensation. The precipitation associated with large-scale condensation does not scale with mean specific humidity, partly because the condensation region moves upward and meridionally as the climate warms, and partly because the mean condensation rate depends on isentropic specific humidity gradients, which do not scale with the specific humidity itself. The local water vapor budget relates local precipitation to evaporation and meridional moisture fluxes, whose scaling in the subtropics and extratropics is examined. A delicate balance between opposing changes in evaporation and moisture flux divergence holds in the subtropical dry zones. The extratropical precipitation maximum follows the storm track in warm climates but lies equatorward of the storm track in cold climates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 229 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3