Meridional Structure of the Seasonally Varying Mixed Layer Temperature Balance in the Eastern Tropical Pacific

Author:

McPhaden Michael J.1,Cronin Meghan F.1,McClurg Dai C.2

Affiliation:

1. NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

2. NOAA/Pacific Marine Environmental Laboratory, and Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Abstract

Abstract The eastern tropical Pacific Ocean is important climatically because of its influence on the El Niño–Southern Oscillation (ENSO) cycle and the American monsoon. Accurate prediction of these phenomena requires a better understanding of the background climatological conditions on which seasonal-to-interannual time-scale anomalies develop in the region. This study addresses the processes responsible for the seasonal cycle of sea surface temperature (SST) in the eastern tropical Pacific using 3 yr (April 2000–March 2003) of moored buoy and satellite data between 8°S and 12°N along 95°W. Results indicate that at all latitudes, surface heat fluxes are important in the mixed layer temperature balance. At 8°S, in a region of relatively deep mean thermocline and mixed layer, local storage of heat crossing the air–sea interface accounts for much of the seasonal cycle in SST. In the equatorial cold tongue and the intertropical convergence zone, where mean upwelling leads to relatively thin mixed layers, vertical turbulent mixing with the upper thermocline is a major contributor to SST change. Lateral temperature advection by seasonally varying large-scale currents is most significant near the equator but is generally of secondary importance. There is a hemispheric asymmetry in seasonal SST variations, with larger amplitudes in the Southern Hemisphere than in the Northern Hemisphere. This asymmetry is mainly due to forcing from the southerly component of the trade winds, which shifts the axis of equatorial upwelling south of the equator while creating an oceanic convergence zone to the north that limits the northward spread of cold upwelled water. In general, results support the Mitchell and Wallace hypothesis about the importance of southerly winds and ocean–atmosphere feedbacks in establishing seasonally varying climatological conditions in the eastern tropical Pacific.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference57 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Triple-dip La Niña in 2020–23: understanding the role of the annual cycle in tropical Pacific SST;Environmental Research Letters;2023-07-11

2. Characterising the seasonal cycle of wind forcing, surface circulation and temperature around the sub-Antarctic Prince Edward Islands;African Journal of Marine Science;2021-01-02

3. Index;Interacting Climates of Ocean Basins;2020-11-26

4. Teleconnections in the Atmosphere;Interacting Climates of Ocean Basins;2020-11-26

5. Variability of the Oceans;Interacting Climates of Ocean Basins;2020-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3