Affiliation:
1. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey
Abstract
Abstract
The modulation of El Niño and La Niña responses by the long-term sea surface temperature (SST) warming trend in the Indian–Western Pacific (IWP) Oceans has been investigated using a large suite of sensitivity integrations with an atmospheric general circulation model. These model runs entail the prescription of anomalous SST conditions corresponding to composite El Niño or La Niña episodes, to SST increases associated with secular warming in IWP, and to combinations of IWP warming and El Niño/La Niña. These SST forcings are derived from the output of coupled model experiments for climate settings of the 1951–2000 and 2001–50 epochs. Emphasis is placed on the wintertime responses in 200-mb height and various indicators of surface climate in the North American sector.
The model responses to El Niño and La Niña forcings are in agreement with the observed interannual anomalies associated with warm and cold episodes. The wintertime model responses in North America to IWP warming bear a distinct positive (negative) spatial correlation with the corresponding responses to La Niña (El Niño). Hence, the amplitude of the combined responses to IWP warming and La Niña is notably higher than that to IWP warming and El Niño. The model projections indicate that, as the SST continues to rise in the IWP sector during the twenty-first century, the strength of various meteorological anomalies accompanying La Niña (El Niño) will increase (decrease) with time. The response of the North American climate and the zonal mean circulation to the combined effects of IWP forcing and La Niña (El Niño) is approximately equal to the linear sum of the separate effects of IWP warming and La Niña (El Niño).
The summertime responses to IWP warming bear some similarity to the meteorological anomalies accompanying extended droughts and heat waves over the continental United States.
Publisher
American Meteorological Society
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献