Seasonal Prediction of Sea Surface Temperature Anomalies Using a Suite of 13 Coupled Atmosphere–Ocean Models

Author:

Krishnamurti T. N.1,Chakraborty Arindam1,Krishnamurti Ruby2,Dewar William K.3,Clayson Carol Anne4

Affiliation:

1. Department of Meteorology, The Florida State University, Tallahassee, Florida

2. Department of Oceanography, and Geophysical Fluid Dynamics Institute, The Florida State University, Tallahassee, Florida

3. Department of Oceanography, The Florida State University, Tallahassee, Florida

4. Department of Meteorology, and Geophysical Fluid Dynamics Institute, The Florida State University, Tallahassee, Florida

Abstract

Abstract Improved seasonal prediction of sea surface temperature (SST) anomalies over the global oceans is the theme of this paper. Using 13 state-of-the-art coupled global atmosphere–ocean models and 13 yr of seasonal forecasts, the performance of individual models, the ensemble mean, the bias-removed ensemble mean, and the Florida State University (FSU) superensemble are compared. A total of 23 400 seasonal forecasts based on 1-month lead times were available for this study. Evaluation metrics include both deterministic and probabilistic skill measures, such as verification of anomalies based on model and observed climatology, time series of specific climate indices, standard deterministic ensemble mean scores including anomaly correlations, root-mean-square (RMS) errors, and probabilistic skill measures such as equitable threat scores for seasonal SST forecasts. This study also illustrates the Niño-3.4 SST forecast skill for the equatorial Pacific Ocean and for the dipole index for the Indian Ocean. The relative skills of total SST fields and of the SST anomalies from the 13 coupled atmosphere–ocean models are presented. Comparisons of superensemble-based seasonal forecasts with recent studies on SST anomaly forecasts are also shown. Overall it is found that the multimodel superensemble forecasts are characterized by considerable RMS error reductions and increased accuracy in the spatial distribution of SST. Superensemble SST skill also persists for El Niño and La Niña forecasts since the large comparative skill of the superensemble is retained across such years. Real-time forecasts of seasonal sea surface temperature anomalies appear to be possible.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference38 articles.

1. ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model.;Barnett;J. Climate,1993

2. Barnett, T., D.Pierce, N.Graham, and M.Latif, 1998: Dynamically based forecasts for tropical pacific SST through mid 1998 using a hybrid coupled ocean-atmospheric model. Experimental Long-Lead Forecast Bulletin, Vol. 7, No. 2, COLA.

3. Barnett, T., D.Pierce, N.Graham, and M.Latif, 1999: Dynamically based forecasts for tropical pacific SST through mid 2000 using a hybrid coupled ocean-atmospheric model. Experimental Long-Lead Forecast Bulletin, Vol. 8, No. 2, COLA.

4. Barnett, T., D.Pierce, N.Graham, and M.Latif, 2000: Dynamically based forecasts for tropical Pacific SST through mid 1998 using a hybrid coupled ocean-atmospheric model. Experimental Long-Lead Forecast Bulletin, Vol. 9, No. 1, COLA, 19–21.

5. Prediction of ENSO episodes using canonical correlation analysis.;Barnston;J. Climate,1992

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3