Response of the Lower St. Lawrence Estuary to External Forcing in Winter

Author:

Smith G. C.1,Saucier F. J.2,Straub D.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

2. Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Quebec, Canada

Abstract

Abstract Mostly because of a lack of observations, fundamental aspects of the St. Lawrence Estuary’s wintertime response to forcing remain poorly understood. The results of a field campaign over the winter of 2002/03 in the estuary are presented. The response of the system to tidal forcing is assessed through the use of harmonic analyses of temperature, salinity, sea level, and current observations. The analyses confirm previous evidence for the presence of semidiurnal internal tides, albeit at greater depths than previously observed for ice-free months. The low-frequency tidal streams were found to be mostly baroclinic in character and to produce an important neap tide intensification of the estuarine circulation. Despite stronger atmospheric momentum forcing in winter, the response is found to be less coherent with the winds than seen in previous studies of ice-free months. The tidal residuals show the cold intermediate layer in the estuary is renewed rapidly (14 days) in late March by the advection of a wedge of near-freezing waters from the Gulf of St. Lawrence. In situ processes appeared to play a lesser role in the renewal of this layer. In particular, significant wintertime deepening of the estuarine surface mixed layer was prevented by surface stability, which remained high throughout the winter. The observations also suggest that the bottom circulation was intensified during winter, with the intrusion in the deep layer of relatively warm Atlantic waters, such that the 3°C isotherm rose from below 150 m to near 60 m.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3